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Preface

This v1.02 edition, published on 18 November 2002, applies to version 2, release 2,
modification 16 of the Linux kernel and to all subsequent releases and modifications
until otherwise indicated in new editions. This edition replaces LNUX-1007-02 pub-
lished in July 2001.
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Chapter 1. Low-level system information

Machine interface

This section describes the processor-specific information for the zSeries processors.

Processor architecture
[z/Architecture Principles of Operation] (SA22-7832) defines the zSeries architecture.

Programs intended to execute directly on the processor use the zSeries instruction
set, and the instruction encoding and semantics of the architecture.

An application program can assume that all instructions defined by the architecture
that are neither privileged nor optional exist and work as documented.

To be ABI-conforming the processor must implement the instructions of the archi-
tecture, perform the specified operations, and produce the expected results. The ABI
neither places performance constraints on systems nor specifies what instructions
must be implemented in hardware. A software emulation of the architecture could
conform to the ABI.

In z/ Architecture a processor runs in big-endian mode. (See the Section called Byte
ordering.)

Data representation

Byte ordering

The architecture defines an 8-bit byte, a 16-bit halfword, a 32-bit word, a 64-bit dou-
bleword and a 128-bit quadword. Byte ordering defines how the bytes that make up
halfwords, words, doublewords and quadwords are ordered in memory. Most signif-
icant byte (MSB) ordering, or "Big-Endian" as it is sometimes called, means that the
most significant byte of a structure is located in the lowest addressed byte position in
a storage unit (byte 0).

Figure 1-1 to Figure 1-4 illustrate the conventions for bit and byte numbering within
storage units of various widths. These conventions apply to both integer data and
floating-point data, where the most significant byte of a floating-point value holds
the sign and the exponent (or at least the start of the exponent). The figures show big-
endian byte numbers in the upper left corners and bit numbers in the lower corners.
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Figure 1-1. Bit and byte numbering in halfwords
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Figure 1-2. Bit and byte numbering in words
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Figure 1-3. Bit and byte numbering in doublewords
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Figure 1-4. Bit and byte numbering in quadwords

Fundamental types

Table 1-1 shows how ANSI C scalar types correspond to those of the zSeries proces-
sor. For all types a NULL pointer has the value zero (binary).

Table 1-1. Scalar types

sizeof : .
Type ANSI C (bytes) Alignment  type (zSeries)
signed char char
Character unsigned char 1 1 byte
signed short short
Short unsigned short 2 2 halfword
signed int int un-
Integer signed intenum |, N word
signed long long
unsigned long
Long signed long long
Lone lon long long un-8 8 doubleword
ong long signed long long
any-type * any-
' type (*) () unsigned
Pointer B B doubleword
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sizeof , ,
Type ANSI C (bytes) Alignment  ftype (zSeries)
Floating point float M 4y single precision
(IEEE)
double s s double precision
(IEEE)
1
long double Py y oxtended
precision (IEEE)

!Compilers and systems may implement the long double data type in some other
way, for performance reasons, using a compiler option. Examples of such formats
could be two successive doubles or even a single double. Such usage does not
conform to this ABI however, and runs the risk of passing a wrongly formatted
floating-point number to another function as an argument. Programs using other
formats should transform long double floating-point numbers to a conforming
format before passing them.

Aggregates and unions

Aggregates (structures and arrays) and unions assume the alignment of their most
strictly aligned component, that is, the component with the largest alignment. The
size of any object, including aggregates and unions, is always a multiple of the align-
ment of the object. An array uses the same alignment as its elements. Structure and
union objects may require padding to meet size and alignment constraints:

» An entire structure or union object is aligned on the same boundary as its most
strictly aligned member.

» Each member is assigned to the lowest available offset with the appropriate align-
ment. This may require internal padding, depending on the previous member.

« If necessary, a structure’s size is increased to make it a multiple of the structure’s
alignment. This may require tail padding if the last member does not end on the
appropriate boundary.

In the following examples (Figure 1-5 to Figure 1-9), member byte offsets (for the
big-endian implementation) appear in the upper left corners.

Table 1-2.
Byte aligned, sizeofis i
]

struct { charc; };

Figure 1-5. Structure smaller than a word
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Table 1-3.
struct { char ¢;
char d; short s;
intn; };

Figure 1-6. No padding

Table 1-4.

struct {
shorts; };

char ¢

Figure 1-7. Internal padding

Table 1-5.
struct { char ¢;
double d; short s;

¥

Word aligned, =izanfis 8

o

1

2
d IS

Halfwoerd aligned, s1zeofis 4

0

1

i
pad s

Doubleword aligned, sizecf is 24

0 1
c pad
4
pad
A
a
12
d
16 18
& pad
= O
pad
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Figure 1-8. Internal and tail padding

Table 1-6.
Word alighed, sizecfis 4
i 1
& pad
] 2
5 pad
i .
|
union { char c;
short s; int j;};

Figure 1-9. Union padding

Bit-fields

C struct and union definitions may have "bit-fields," defining integral objects with a
specified number of bits (see Table 1-7).

Table 1-7. Bit fields

Bit-field type \Width n Range

signed char char un- 1to08 2't02'-10t02-10to2-1
signed char

signed short short un- 1to 16 21t02'-10t02-10to2-1
signed short

signed int int un- 1to 32 2't02'-10t02-10to2-1
signed int enum Oto2-1

signed  long  long 1 to 64 2't02'-10t02-10t02-1
unsigned long 2't021-10t02-10to2-1
signed long long

long long un-

signed long long

"Plain” bit-fields (that is, those neither signed nor unsigned) always have

5
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non-negative values. Although they may have type short, int or long (which can
have negative values), bit-fields of these types have the same range as bit-fields of
the same size with the corresponding unsigned type. Bit-fields obey the same size
and alignment rules as other structure and union members, with the following
additions:

« Bit-fields are allocated from left to right (most to least significant).

* A bit-field must entirely reside in a storage unit appropriate for its declared type.
Thus, a bit-field never crosses its unit boundary.

« Bit-fields must share a storage unit with other structure and union members (either
bit-field or non-bit-field) if and only if there is sufficient space within the storage
unit.

» Unnamed bit-fields’ types do not affect the alignment of a structure or union, al-
though an individual bit-field’s member offsets obey the alignment constraints. An
unnamed, zero-width bit-field shall prevent any further member, bit-field or other,
from residing in the storage unit corresponding to the type of the zero-width bit-
field.

The following examples (Figure 1-10 through Figure 1-15) show structure and union
member byte offsets in the upper left corners. Bit numbers appear in the lower cor-

ners.
o 1 2 3
0x01020304 01 02 G3 ¢4
il T a8 1516 23124 31
Figure 1-10. Bit numbering
Word aligned, sizecf is 4
struct |
int  j:5;: 3 k m pad
int  k:g: lp 45 19|11 17|18 31
int m:7;
}#
Figure 1-11. Left-to-right allocation
Word aligned, sizecf 812
struct | a . 4 3
a ] pa c
sahort g8:9;
int J:9; 0 g9 17118 23|24 3]
char oy 4 31
ghort t:9; t pad u pad
short  u:d; 32 4041 47/48 56|57 63
char dr a 5
I¥ d prad
6d Tl 7% 35

Figure 1-12. Boundary alignment
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struct Halfword aligned, sizeofris 2
char o;
ghort g:8; a 1
=
ki i 78 15

Figure 1-13. Storage unit sharing

Halfword aligned, sizect is 2

union { o o 1 pad
char c; 0 8 15
shert s:8;
. il
}# i = pad
d] & 15

Figure 1-14. Union allocation

Byte alighed, sizecfis 9

struct | 0 = 1

char c; H

int HIVE 0 T |8 31

char dr 4 5 E

short :?; d pad : 9 pad

char 2 32 33|40 4748 5657 63
]'; q

=2
ad 71

Figure 1-15. Unnamed bit fields

Function calling sequence

This section discusses the standard function calling sequence, including stack frame
layout, register usage, and parameter passing.

Registers

The ABI makes the assumption that the processor has 16 general purpose registers
and 16 IEEE floating point registers. zSeries processors have these registers; each reg-
ister is 64 bits wide. The use of the registers is described in the table below.

Table 1-8.
Register name Usage Call effect
r0, r1 General purpose Volatile!
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Register name Usage Call effect
r2 Parameter passing and Volatile
return values
r3, r4, 15 Parameter passing Volatile
r6 Parameter passing Saved?
r7 -rll Local variables Saved
r12 Local variable, Saved
commonly used as
GOT pointer
rl3 Local variable, Saved
commonly used as
Literal Pool pointer
rl4 Return address Volatile
rl5 Stack pointer Saved
{0, £2, f4, t6 Parameter passing and Volatile
return values
f1, 13,15, {7 General purpose Volatile
8 — f15 General purpose Saved
Access registers 0, 1 Reserved for system  Volatile
use
Access registers 2-15 General purpose Volatile

'Volatile: These registers are not preserved across function calls.

2Saved: These registers belong to the calling function. A called function shall save
these registers’” values before it changes them, restoring their values before it re-

turns.

* Registers r6 through r13, 115, f1, {3, f5 and {7 are nonvolatile; that is, they "belong"
to the calling function. A called function shall save these registers’ values before it
changes them, restoring their values before it returns.

* Registers 10, 11, 12, 13, r4, 15, r14, 0, {2, {4, {6, f8 through f15 are volatile; that is,
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they are not preserved across function calls.

+ Furthermore the values in registers 10 and r1 may be altered by the interface code
in cross-module calls, so a function cannot depend on the values in these registers
having the same values that were placed in them by the caller.

The following registers have assigned roles in the standard calling sequence:

Table 1-9.

r12 Global Offset Table pointer. If a position-independent
module uses cross-linking the compiler must point 112 to
the GOT as described in the Section called Dynamic
Linking in Chapter 3. If not this register may be used
locally.

rl3 Commonly used as the Literal Pool pointer. If the Literal
Pool is not required this register may be used locally.

r14 This register will contain the address to which a called
function will normally return. r14 is volatile across
function calls.

r15 The stack pointer (stored in r15) will maintain an 8-byte
alignment. It will always point to the lowest allocated
valid stack frame, and will grow towards low addresses.
The contents of the word addressed by this register may
point to the previously allocated stack frame. If required
it can be decremented by the called function — see the
Section called Dynamic stack space allocation.

Signals can interrupt processes. Functions called during signal handling have no un-
usual restrictions on their use of registers. Moreover, if a signal handling function
returns, the process will resume its original execution path with all registers restored
to their original values. Thus programs and compilers may freely use all registers
listed above, except those reserved for system use, without the danger of signal han-
dlers inadvertently changing their values.

Register usage

With these calling conventions the following usage of the registers for inline assem-
blies is recommended:

* General registers r0 and r1 should be used internally whenever possible
* General registers r2 to r5 should be second choice

» General registers r12 to r15 should only be used for their standard function.

The stack frame

A function will be passed a frame on the runtime stack by the function which called
it, and may allocate a new stack frame. A new stack frame is required if the called
function will in turn call further functions (which must be passed the address of the
new frame). This stack grows downwards from high addresses. Figure 1-16 shows the
stack frame organization. SP in the figure denotes the stack pointer (general purpose
register r15) passed to the called function on entry. Maintenance of the back chain

9
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pointers is not a requirement of the ABI, but the storage area for these pointers must
be allocated whether used or not.

Previous stack rame

— Back chain {optional)

High Address

Local and spill variable area
of calling funcion

Parameter area
passed to callad function

Reylster sava area
for called function use

Reserved for compiler use

BP—» Back chain {optional) Low Address

Figure 1-16. Standard stack frame

The format of the register save area created by the gcc compiler is:

1m0
FPR &
FrR 4 Floating-point argumant
FER 2  register save area
125 FER 4
EFR 1B
Other register
save area
4| BeR B
GER 5 Argument register
I £ave ared
15 GPFR 2

Figure 1-17. Register save area

The following requirements apply to the stack frame:

10
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 The stack pointer shall maintain 8-byte alignment.

« The stack pointer points to the first word of the lowest allocated stack frame. If the
"back chain" is implemented this word will point to the previously allocated stack
frame (towards higher addresses), except for the first stack frame, which shall have
a back chain of zero (NULL). The stack shall grow downwards, in other words
towards lower addresses.

e The called function may create a new stack frame by decrementing the stack
pointer by the size of the new frame. This is required if this function calls further
functions. The stack pointer must be restored prior to return.

+ The parameter list area shall be allocated by the caller and shall be large enough
to contain the arguments that the caller stores in it. Its contents are not preserved
across calls.

 Other areas depend on the compiler and the code being compiled. The standard
calling sequence does not define a maximum stack frame size.

The stack space for the register save area and back chain must be allocated by the
caller. The size of these is 160 bytes.

Except for the stack frame header and any padding necessary to make the entire
frame a multiple of 8 bytes in length, a function need not allocate space for the areas
that it does not use. If a function does not call any other functions and does not
require any of the other parts of the stack frame, it need not establish a stack frame.
Any padding of the frame as a whole shall be within the local variable area; the
parameter list area shall immediately follow the stack frame header, and the register
save areas shall contain no padding.

Parameter passing

Arguments to called functions are passed in registers. Since all computations must
be performed in registers, memory traffic can be eliminated if the caller can compute
arguments into registers and pass them in the same registers to the called function,
where the called function can then use these arguments for further computation in
the same registers. The number of registers implemented in a processor architecture
naturally limits the number of arguments that can be passed in this manner.

For Linux for zSeries, the following applies:

* General registers r2 to 16 are used for integer values.
« Floating point registers f0, f2, f4 and {6 are used for floating point values.

If there are more than five integral values or four floating point values, the rest of the
arguments are passed on the stack 160 bytes above the initial stack pointer.

Beside these general rules the following rules apply:

« char, short, int, long and long long are passed in general registers.

« Structures equivalent to a floating point type are passed in floating point registers.
A structure is equivalent to a floating point type if and only if it has exactly one
member, which is either of floating point type of itself a structure equivalent to a
floating point type.

« Structures with a size of 1, 2, 4, or 8 bytes which are not equivalent to a floating
point type are passed as integral values.

« All other structures are passed by reference. If needed, the called function makes a
copy of the value.

+ Complex numbers are passed as structures.

11
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et High Address
Paramater ward n+2
+16
Parameter word n+1
+8
160 Parameter word r
Reqister save area
1h
Reservad for compller use
Back chain Low Address

Figure 1-18. Parameter list area

The following algorithm specifies where argument data is passed for the C language.
For this purpose, consider the arguments as ordered from left (first argument) to
right, although the order of evaluation of the arguments is unspecified. In this algo-
rithm fr contains the number of the next available floating-point register, gr contains
the number of the next available general purpose register, and starg is the address of
the next available stack argument word.

INITIALIZE

SCAN

Set fr=0, gr=2, and starg to the address of parameter word 1.

If there are no more arguments, terminate. Otherwise, select one of the following
depending on the type of the next argument:

DOUBLE_OR_FLOAT:

A DOUBLE_OR_FLOAT is one of the following:
A single length floating point type,

A double length floating point type.

* A structure equivalent to a floating point type.

If fr>6, that is, if there are no more available floating-point registers, go to
OTHER. Otherwise, load the argument value into floating-point register fr,
set fr to fr+2, and go to SCAN.

SIMPLE_ARG

12

A SIMPLE_ARG is one of the following;:

* One of the simple integer types no more than 64 bits wide (char, short, int,
long, long long, enum).

A pointer to an object of any type.

A struct or a union of 1, 2, 4 or 8 bytes which is not a structure equivalent
to a floating point type.

+ A struct or union of another size, or a long double, any of which shall be
passed as a pointer to the object, or to a copy of the object where necessary
to enforce call-by-value semantics. Only if the caller can ascertain that the
object is "constant" can it pass a pointer to the object itself.
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If gr>6, go to OTHER. Otherwise load the argument value into general reg-
ister gr, set gr to gr+1, and go to SCAN. Values shorter than 64 bits are sign-
or zero-extended (as appropriate) to 64 bits.

Arguments not otherwise handled above are passed in the parameter words of
the caller’s stack frame. SIMPLE_ARGs, as defined above, are considered to have
size of 8 bytes, where simple integer types shorter than 8 bytes are signed or
zero-extended (as appropriate) to 8 bytes, and other arguments of size less than 8
bytes will be placed right-justified into a 8 byte slot. float and double arguments
are considered to have a size of 8 bytes, where float arguments will be placed
right-justified into an 8 byte slot.

The contents of registers and words which are skipped by the above algorithm for
alignment purposes (padding) are undefined.

As an example, assume the declarations and the function call shown in Figure 1-19.
The corresponding register allocation and storage would be as shown in Table 1-10.

inti,j, kL
long long 1I;
double f, g, h;

int m;

x =func(, j, g k, L 1L f, h,

m);

Figure 1-19. Parameter passing example

Table 1-10. Parameter passing example: Register allocation

Ger_1era| purpose Floating-point registers Stack frame offset
registers

r2:i f0: g 160: m

r3:j f2: f

rd: k f4: h

r5: 1

r6: 11

Variable argument lists

Some otherwise portable C programs depend on the argument passing scheme, im-
plicitly assuming that 1) all arguments are passed on the stack, and 2) arguments ap-
pear in increasing order on the stack. Programs that make these assumptions have
never been portable, but they have worked on many implementations. However,

13
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they do not work on z/Architecture because some arguments are passed in regis-
ters. Portable C programs use the header files <stdarg.h> or <varargs.h> to deal
with variable argument lists on zSeries and other machines as well.

Return values

In general, arguments are returned in registers, as described in Table 1-11.

Table 1-11. Registers for return values

Type Returned in register:

char, short, int, long and long long  general register 2 (r2)

double and float floating point register 0 (f0)

Functions shall return float or double values in f0, with float values rounded to single
precision. Functions shall return values of type int, long, long long, enum, short and
char, or a pointer to any type as unsigned or signed integers as appropriate, zero- or
sign-extended to 64 bits if necessary, in r2.

Values of type long double and structures or unions are returned in a storage buffer
allocated by the caller.

Operating system interface

14

Virtual address space

Processes execute in a 64-bit virtual address space. Memory management translates
virtual addresses to physical addresses, hiding physical addressing and letting a pro-
cess run anywhere in the system’s real memory. Processes typically begin with three
logical segments, commonly called "text", "data" and "stack". An object file may con-
tain more segments (for example, for debugger use), and a process can also create
additional segments for itself with system services.

Note: The term "virtual address" as used in this document refers to a 64-bit address
generated by a program, as contrasted with the physical address to which it is mapped.

Page size

Memory is organized into pages, which are the system’s smallest units of memory
allocation. The hardware page size for z/ Architecture is 4096 bytes.

Virtual address assignments

Processes have a 42, 53 or 64-bit address space available to them, depending on the
Linux kernel level.

Figure 1-20 shows the virtual address configuration on the zSeries architecture. The
segments with different properties are typically grouped in different areas of the ad-
dress space. The loadable segments may begin at zero (0); the exact addresses depend
on the executable file format (see Chapter 2 and Chapter 3). The process’ stack resides
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at the end of the virtual memory and grows downwards. Processes can control the
amount of virtual memory allotted for stack space, as described below.

Ox3ffEfFEfEff End of memory

Stack

Dynamic segments
Anonymous mapping base

Heap
Executable file
Program base
Unmapped
0 Beginning of memaory

Figure 1-20. 42-bit virtual address configuration

Note: Although application programs may begin at virtual address 0, they conventionally
begin above 0x1000 (4 Kbytes), leaving the initial 4 Kbytes with an invalid address map-
ping. Processes that reference this invalid memory (for example by de-referencing a null
pointer) generate an translation exception as described in the Section called Exception
interface.

Although applications may control their memory assignments, the typical arrange-
ment follows the diagram above. When applications let the system choose addresses
for dynamic segments (including shared object segments), the system will prefer ad-
dresses in the upper half of the address space (for a 42-bit address space this means
addresses above 1 TByte).

Managing the process stack

The section the Section called Process initialization describes the initial stack contents.
Stack addresses can change from one system to the next — even from one process
execution to the next on a single system. A program, therefore, should not depend
on finding its stack at a particular virtual address.

A tunable configuration parameter controls the system maximum stack size. A pro-
cess can also use setrlimit to set its own maximum stack size, up to the system limit.
The stack segment is both readable and writable.

Coding guidelines

Operating system facilities, such as mmap, allow a process to establish address map-
pings in two ways. Firstly, the program can let the system choose an address. Sec-
ondly, the program can request the system to use an address the program supplies.
The second alternative can cause application portability problems because the re-
quested address might not always be available. Differences in virtual address space
can be particularly troublesome between different architectures, but the same prob-
lems can arise within a single architecture.

15
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Processes’ address spaces typically have three segments that can change size from
one execution to the next: the stack (through setrlimit); the data segment (through
malloc); and the dynamic segment area (through mmap). Changes in one area may
affect the virtual addresses available for another. Consequently an address that is
available in one process execution might not be available in the next. Thus a program
that used mmap to request a mapping at a specific address could appear to work in
some environments and fail in others. For this reason programs that want to establish
a mapping in their address space should let the system choose the address.

Despite these warnings about requesting specific addresses the facility can be used
properly. For example, a multiprocess application might map several files into the
address space of each process and build relative pointers among the files” data. This
could be done by having each process ask for a certain amount of memory at an
address chosen by the system. After each process receives its own private address
from the system it would map the desired files into memory at specific addresses
within the original area. This collection of mappings could be at different addresses
in each process but their relative positions would be fixed. Without the ability to ask
for specific addresses, the application could not build shared data structures because
the relative positions for files in each process would be unpredictable.

Processor execution modes

Two execution modes exist in z/Architecture: problem (user) state and supervisor
state. Processes run in problem state (the less privileged). The operating system ker-
nel runs in supervisor state. A program executes an supervisor call (svc) instruction
to change execution modes.

Note that the ABI does not define the implementation of individual system calls.
Instead programs shall use the system libraries. Programs with embedded system
call or trap instructions do not conform to the ABI.

Exception interface
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The z/Architecture exception mechanism allows the processor to change to super-
visor state as a result of six different causes: system calls, I/O interrupts, external
interrupts, machine checks, restart interruptions or program checks (unusual condi-
tions arising in the execution of instructions).

When exceptions occur:

1. information (such as the address of the next instruction to be executed after
control is returned to the original program) is saved,

2. program control passes from user to supervisor level, and

3. software continues execution at an address (the exception vector)
predetermined for each exception.

Exceptions may be synchronous or asynchronous. Synchronous exceptions, being
caused by instruction execution, can be explicitly generated by a process. The op-
erating system handles an exception either by completing the faulting operation in
a manner transparent to the application or by delivering a signal to the application.
The correspondence between exceptions and signals is shown in Table 1-12.

Table 1-12. Exceptions and Signals

Exception Name  [Signal Examples
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Mlegal instruction  SIGILL Ilegal or privileged instruction, Invalid
instruction form, Optional, unimplemented

instruction

Storage access SIGSEGV  |[Unmapped instruction or data location access,
Storage protection violation

Alignment SIGBUS Invalid data item alignment, Invalid memory
access

Breakpoint SIGTRAP  |Breakpoint program check

Floating exception SIGFPE Floating point overflow or underflow, Floating

point divide by zero, Floating point conversion
overflow, Other enabled floating point exceptions

The signals that an exception may give rise to are SIGILL, SIGSEGV, SIGBUS, SIG-
TRAP, and SIGFPE. If one of these signals is generated due to an exception when the
signal is blocked, the behavior is undefined.

initialization

This section describes the machine state that exec creates for "infant" processes, in-
cluding argument passing, register usage, and stack frame layout. Programming lan-
guage systems use this initial program state to establish a standard environment for
their application programs. For example, a C program begins executing at a function
named main, conventionally declared in the way described in Figure 1-21:

extern int main (int argc, char

*argv] ], char *envp[ ]);

Figure 1-21. Declaration for main

Briefly, argc is a non-negative argument count; argv is an array of argument strings,
with argv[argc] == 0, and envp is an array of environment strings, also terminated
by a NULL pointer.

Although this section does not describe C program initialization, it gives the infor-
mation necessary to implement the call to main or to the entry point for a program in
any other language.

Registers

When a process is first entered (from an exec system call), the contents of registers
other than those listed below are unspecified. Consequently, a program that requires
registers to have specific values must set them explicitly during process initialization.
It should not rely on the operating system to set all registers to 0. Following are the
registers whose contents are specified:

Table 1-13.

rl5 The initial stack pointer, aligned to a 8-byte boundary and pointing to a
stack location that contains the argument count (see the Section called
Process stack for further information about the initial stack layout)

17
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fpc

The floating point control register contains 0, specifying "round to

nearest" mode and the disabling of floating-point exceptions

Process stack

Every process has a stack, but the system defines no fixed stack address. Furthermore,
a program’s stack address can change from one system to another — even from one
process invocation to another. Thus the process initialization code must use the stack
address in general purpose register r15. Data in the stack segment at addresses below
the stack pointer contain undefined values.

Whereas the argument and environment vectors transmit information from one ap-
plication program to another, the auxiliary vector conveys information from the op-
erating system to the program. This vector is an array of structures, which are defined
in Figure 1-22.

typedef struct {

long a_type;

union {

long a_val;
void *a_ptr;

void (*a_fcn)();

} a_un;

} auxv_t;

Figure 1-22. Auxiliary vector structure

The structures are interpreted according to the a_type member, as shown in Table

1-14.

Table 1-14. Auxiliary Vector Types, a_type

Name Value a_un
AT_NULL 0 ignored
AT_IGNORE 1 ignored
AT_EXECFD 2 a_val
AT_PHDR 3 a_ptr
IAT_PHENT 4 a_val
AT_PHNUM 5 a_val
AT_PAGESZ 6 a_val
IAT_BASE 7 a_ptr
AT _FLAGS 3 a_val
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AT_ENTRY 9 a_ptr
IAT_NOTELF 10 a_val
AT_UID 11 a_val
IAT_EUID 12 a_val
AT_GID 13 a_val
AT _EGID 14 a_val

a_type auxiliary vector types are described in "Auxiliary Vector Types Description’
below.

Auxiliary Vector Types Description

AT_NULL

AT_IGNORE

AT_EXECFD

AT _PHDR

AT_PHENT

AT_PHNUM

AT_PAGESZ

AT _BASE

The auxiliary vector has no fixed length; so an entry of this type is used to denote
the end of the vector. The corresponding value of a_un is undefined.

This type indicates the entry has no meaning. The corresponding value of a_un
is undefined.

exec may pass control to an interpreter program. When this happens, the system
places either an entry of type AT_EXECFD or one of type AT_PHDR in the aux-
iliary vector. The a_val field in the AT_EXECFD entry contains a file descriptor
for the application program’s object file.

Under some conditions, the system creates the memory image of the application
program before passing control to an interpreter program. When this happens,
the a_ptr field of the AT_PHDR entry tells the interpreter where to find the pro-
gram header table in the memory image. If the AT_PHDR entry is present, en-
tries of types AT_PHENT, AT_PHNUM and AT_ENTRY must also be present.
See the section Chapter 3 for more information about the program header table.

The a_val field of this entry holds the size, in bytes, of one entry in the program
header table at which the AT_PHDR entry points.

The a_val field of this entry holds the number of entries in the program header
table at which the AT_PHDR entry points.

If present this entry’s a_val field gives the system page size in bytes. The same
information is also available through sysconf.

The a_ptr member of this entry holds the base address at which the interpreter
program was loaded into memory:.

19
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AT_FLAGS
If present, the a_val field of this entry holds 1-bit flags. Undefined bits are set to
Zero.

AT_ENTRY
The a_ptr field of this entry holds the entry point of the application program to
which the interpreter program should transfer control.

AT_NOTELF
The a_val field of this entry is non-zero if the program is in another format than
ELF, for example in the old COFF format.

AT _UID
The a_ptr field of this entry holds the real user id of the process.

AT_EUID
The a_ptr field of this entry holds the effective user id of the process.

AT_GID
The a_ptr field of this entry holds the real group id of the process.

AT_EGID

The a_ptr field of this entry holds the effective group id of the process.

Other auxiliary vector types are reserved. No flags are currently defined for
AT_FLAGS on the zSeries architecture.

When a process receives control, its stack holds the arguments, environment, and
auxiliary vector from exec. Argument strings, environment strings, and the auxil-
iary information appear in no specific order within the information block; the system
makes no guarantees about their relative arrangement. The system may also leave
an unspecified amount of memory between the null auxiliary vector entry and the
beginning of the information block. A sample initial stack is shown in Figure 1-23.

20
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Informatich block, including argument
and environment strings and auxiliary
information {size varies)

Unspecifiad

AT_NULL auxillary vector entry

Auxiliary vector (4-word eniries)

Zero doubleword

Environmant painters (2-words sach)

zere doubleword

Argument polnters [2-words each)

Argument count doubleword

Figure 1-23. Initial Process Stack

Coding examples

Top of Stack

Low Address

This section describes example code sequences for fundamental operations such as
calling functions, accessing static objects, and transferring control from one part of
a program to another. Previous sections discussed how a program may use the ma-
chine or the operating system, and they specified what a program may and may not
assume about the execution environment. Unlike previous material, the information
in this section illustrates how operations may be done, not how they must be done.

As before, examples use the ANSI C language. Other programming languages may
use the same conventions displayed below, but failure to do so does not prevent a
program from conforming to the ABI. Two main object code models are available:

Absolute code

Instructions can hold absolute addresses under this model. To execute properly,
the program must be loaded at a specific virtual address, making the program’s
absolute addresses coincide with the process’ virtual addresses.

Position-independent code

Instructions under this model hold relative addresses, not absolute addresses.
Consequently, the code is not tied to a specific load address, allowing it to exe-
cute properly at various positions in virtual memory.

The following sections describe the differences between these models. When differ-
ent, code sequences for the models appear together for easier comparison.
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Note: The examples below show code fragments with various simplifications. They are in-
tended to explain addressing modes, not to show optimal code sequences or to reproduce
compiler output.

Code model overview

When the system creates a process image, the executable file portion of the process
has fixed addresses and the system chooses shared object library virtual addresses to
avoid conflicts with other segments in the process. To maximize text sharing, shared
objects conventionally use position-independent code, in which instructions contain
no absolute addresses. Shared object text segments can be loaded at various virtual
addresses without having to change the segment images. Thus multiple processes
can share a single shared object text segment, even if the segment resides at a different
virtual address in each process.

Position-independent code relies on two techniques:

» Control transfer instructions hold addresses relative to the Current Instruction Ad-
dress (CIA), or use registers that hold the transfer address. A CIA-relative branch
computes its destination address in terms of the CIA, not relative to any absolute
address.

« When the program requires an absolute address, it computes the desired value.
Instead of embedding absolute addresses in instructions (in the text segment), the
compiler generates code to calculate an absolute address (in a register or in the
stack or data segment) during execution.

Because z/Architecture provides CIA-relative branch instructions and also branch
instructions using registers that hold the transfer address, compilers can satisfy the
first condition easily.

A Global Offset Table (GOT), provides information for address calculation. Position-
independent object files (executable and shared object files) have a table in their data
segment that holds addresses. When the system creates the memory image for an
object file, the table entries are relocated to reflect the absolute virtual address as as-
signed for an individual process. Because data segments are private for each process,
the table entries can change — unlike text segments, which multiple processes share.

Two position-independent models give programs a choice between more efficient
code with some size restrictions and less efficient code without those restrictions. Be-
cause of the processor architecture, a GOT with no more than 512 entries (4096 bytes)
is more efficient than a larger one. Programs that need more entries must use the
larger, more general code. In the following sections, the term "small model position-
independent code" is used to refer to code that assumes the smaller GOT, and "large
model position-independent code" is used to refer to the general code.

Function prolog and epilog

This section describes the prolog and epilog code of functions . A function’s prolog
establishes a stack frame, if necessary, and may save any nonvolatile registers it uses.
A function’s epilog generally restores registers that were saved in the prolog code,
restores the previous stack frame, and returns to the caller.

Prolog

The prolog of a function has to save the state of the calling function and set up the
base register for the code of the function body. The following is in general done by
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the function prolog:

« Save all registers used within the function which the calling function assumes to
be non-volatile.

 Set up the base register for the literal pool.
+ Allocate stack space by decrementing the stack pointer.

* Set up the dynamic chain by storing the old stack pointer value at stack location
zero if the "back chain" is implemented.

 Set up the GOT pointer if the compiler is generating position independent code.

(A function that is position independent will probably want to load a pointer to the
GOT into a nonvolatile register. This may be omitted if the function makes no ex-
ternal data references. If external data references are only made within conditional
code, loading the GOT pointer may be deferred until it is known to be needed.)

* Set up the frame pointer if the function allocates stack space dynamically (with
alloca).

The compiler tries to do as little as possible of the above; the ideal case is to do noth-
ing at all (for a leaf function without symbolic references).

Epilog

The epilog of a function restores the registers saved in the prolog (which include the
stack pointer) and branches to the return address.

Prolog and epilog example

.section .rodata

.align 2
.LCO:

string "hello, world \n"
fext

.align 4
.globl main

.type main,@function
main:

# Prolog
STMG 11,15,88(15) # Save callers registers

LARL 13,.LT0_0 # Load literal pool pointer
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.section .rodata # Switch for literal pool
.align 2 # to read-only data section
.LTO0_0:
LC2:
.quad 65536
.LTNO_0:
text # Back to text section
LGR 1,15 # Load stack pointer in GPR 1
AGHI 15,-160 # Allocate stack space
STG 1,0(15) # Store backchain
# Prolog end
LARL 2,.LCO

LG 3,.LC2-LT0_0(13)
BRASL 14,printf
LGHI 2,0

# Epilog
LG 4,272(15) # Load return address
LMG 11,15,248(15) # Restore registers
BR 4 # Branch back to caller

# Epilog end

Figure 1-24. Prolog and epilog example

Profiling

This section shows a way of providing profiling (entry counting) on zSeries systems.
An ABI-conforming system is not required to provide profiling; however if it does
this is one possible (not required) implementation.

If a function is to be profiled it has to call the _mcount routine after the function
prolog. This routine has a special linkage. It gets an address in register 1 and returns
without having changed any register. The address is a pointer to a word-aligned one-
word static data area, initialized to zero, in which the _mcount routine is to maintain
a count of the number of times the function is called.

For example Figure 1-25 shows how the code after the function prolog may look.
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STMG  7,15,56(15) #

Save callers registers

LGR 1,15 # Stack pointer
AGHI 15,-160 # Allocate new
STG 1,0(15) # Save backchain
LGR 11,15 # Local stack pointer
.data
.align 4

.LPO: .quad 0 # Profile counter
text

# Function profiler

STG 14,8(15) # Preserve r14

LARL 1,.LPO # Load address of profile counter
BRASL 14, mcount # Branch to _mcount

LG 14,8(15) # Restore r14

Figure 1-25. Code for profiling

Data objects

This section describes only objects with static storage duration. It excludes stack-
resident objects because programs always compute their virtual addresses relative to
the stack or frame pointers.

Because zSeries instructions cannot hold 64-bit addresses directly, a program has to
build an address in a register and access memory through that register. In order to do
so a function normally has a literal pool that holds the addresses of data objects used
by the function. Register 13 is set up in the function prolog to point to the start of this
literal pool.

Position-independent code cannot contain absolute addresses. In order to access a
local symbol the literal pool contains the (signed) offset of the symbol relative to the
start of the pool. Combining the offset loaded from the literal pool with the address
in register 13 gives the absolute address of the local symbol. In the case of a global
symbol the address of the symbol has to be loaded from the Global Offset Table. The
offset in the GOT can either be contained in the instruction itself or in the literal pool.
See Figure 1-26 for an example.

Figure 1-26 through Figure 1-28 show sample assembly language equivalents to C
language code for absolute and position-independent compilations. It is assumed
that all shared objects are compiled as position-independent and only executable
modules may have absolute addresses. The code in the figures contains many re-
dundant operations as it is only intended to show how each C statement could have
been compiled independently of its context. The function prolog is not shown, and it
is assumed that it has loaded the address of the literal pool in register 13.
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Table 1-15.
C zSeries machine instructions (Assembler)
extern int src; extern int dst; LARL 1,dst LARL 2,src
extern int *ptr; dst = src; MVC 0(4,1),0(2) LARL 1,ptr LARL 2,dst
ptr = &dst; *ptr = src; STG 2,0(1) LARL 2,ptr LG 1,002)
LARL 2,src MVC 0(4,1),0(2)
Figure 1-26. Absolute addressing
Table 1-16.
C zSeries machine instructions (Assembler)
extern int src; extern int dst; LARL 12, GLOBAL_OFFSET_TABLE_
extern int *ptr; dst = src; LG 1,dsteGOT12(12) LG 2,5rc@GOT12(12)
ptr = &dst; *ptr = src; LGF 3,0(2) ST 3,0(1)
LARL 12, GLOBAL_OFFSET_TABLE_
LG 1,ptr@GOT12(12)
LG 2,dst@GOT12(12) STG 2,0(1)
LARL 12, GLOBAL_OFFSET_TABLE_
LG 2,ptr@GOT12(12) LG 1,0(2)
LG 2,src@GOT12(12) LGF 3,02
ST 3,0(1)

Figure 1-27. Small model position-independent addressing

Table 1-17.

C zSeries Assembler
extern int src; extern int dst; LARL 2,dst@GOT LG 2,002
extern int *ptr; dst = src; LARL 3,src@GOT LG 3,0(3)
ptr = &dst; *ptr = src; MVC  0(4,2),003) LARL 2,ptr@GOT

LG 2,0(2) LARL 3,dst@GOT LG 3,00)
STG 3,02)  LARL 2,ptr@GOT LG 2,0(2)
LG 1,02) LARL 3,5rc@GOT LG 3,003)
MVC 0(4,1),03)

Figure 1-28. Large model position-independent addressing

Function calls

Programs can use the z/ Architecture BRASL instruction to make direct function calls.
A BRASL instruction has a self-relative branch displacement that can reach 4 GBytes
26
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in either direction. To call functions beyond this limit (inter-module calls) load the
address in a register and use the BASR instruction for the call. Register 14 is used as
the first operand of BASR to hold the return address as shown in Figure 1-29.

The called function may be in the same module (executable or shared object) as the
caller, or it may be in a different module. In the former case, if the called function is
not in a shared object, the linkage editor resolves the symbol. In all other cases the
linkage editor cannot directly resolve the symbol. Instead the linkage editor generates
"glue" code and resolves the symbol to point to the glue code. The dynamic linker
will provide the real address of the function in the Global Offset Table. The glue code
loads this address and branches to the function itself. See the Section called Procedure
Linkage Table in Chapter 3 for more details.

Table 1-18.

C zSeries machine instructions (Assembler)
extern void func(); ex- LARL 1,ptr LARL 2,func
tern void (*ptr)(); ptr = func; STG 2,0(1) BRASL 14,func LARL 1,ptr
func(); (*ptr) (); LG 1,0(1) BASR 14,1

Figure 1-29. Absolute function call

Table 1-19.
C zSeries machine instructions (Assembler)
extern void func(); ex- LARL 12, GLOBAL_OFFSET_TABLE_
tern void (*ptr)(); ptr = func; LG 1,ptr@GOT12(12) LG 2,func@GOT12(12)
func(); (*ptr) (); STG 2,0(1) BRASL 14,func@PLT
LARL 12,_GLOBAL_OFFSET_TABLE_
LG 1,ptr@GOT12(12) LG 1,0(1)
BASR 14,1

Figure 1-30. Small model position-independent function call

Table 1-20.
C zSeries machine instructions (Assembler)
extern void func(); ex- LARL 2,ptr@GOT LG 2,002
tern void (*ptr)(); ptr = func; LARL 3,func@GOT LG 3,003) STG 3,0(2)
func(); (*ptr) (); BRASL 14,func@PLT LARL 2,ptr@GOT
LG 2,02) LG 2,02) BASR 14,2
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Figure 1-31. Large model position-independent function call

Branching

Programs use branch instructions to control their execution flow. z/Architecture has
a variety of branch instructions. The most commonly used of these performs a self-
relative jump with a 128-Kbyte range (up to 64 Kbytes in either direction). For large
functions another self-relative jump is available with a range of 4 Gbytes (up to 2

Gbytes in either direction).

Table 1-21.
C zSeries machine instructions (Assembler)
label: goto label; .LO01: BRC 15,.L01
. ... farlabel: ... .L02: BRCL 15,.L02
goto farlabel;

Figure 1-32. Branch instruction

C language switch statements provide multi-way selection. When the case labels of a
switch statement satisfy grouping constraints the compiler implements the selection
with an address table. The following examples use several simplifying conventions

to hide irrelevant details:

1. The selection expression resides in register 2.

2. The case label constants begin at zero.

3. The case labels, the default, and the address table use assembly names .Lcasei,

.Ldef and .Ltab respectively.

Table 1-22.

C zSeries machine instructions (Assembler)
switch(j) { case 0: LGHI 1,3 CLGR 2,1 BRC 2,.Ldef
case 1: ... case 3: SLLG 2,2,3 LARL 1,.Ltab LG 3,0(1,2)
default: } BR 3 .Ltab: .quad .Lcase0 .quad .Lcasel

.quad .Ldef .quad .Lcase3

Figure 1-33. Absolute switch code

Table 1-23.
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C zSeries machine instructions (Assembler)
switch(j) { case O: # Literal pool .LTO: #Code
case 1: ... case 3: LGHI 1,3 CLGR 2,1 BRC 2,.Ldef
default: } SLLG 2,23 LARL 1,.Ltab LG 3,0(1,2)
AGR 3,13 BR 3 .Ltab: .quad .Lcase0-
.LTO0 .quad .Lcasel-.LTO .quad .Ldef-.LTO
.quad .Lcase3-.LTO

Figure 1-34. Position-independent switch code, all models

Dynamic stack space allocation

The GNU C compiler, and most recent compilers, support dynamic stack space allo-
cation via alloca.

Figure 1-35 shows the stack frame before and after dynamic stack allocation. The
local variables area is used for storage of function data, such as local variables, whose
sizes are known to the compiler. This area is allocated at function entry and does not
change in size or position during the function’s activation.

The parameter list area holds "overflow" arguments passed in calls to other functions.
(See the OTHER label in the Section called Parameter passing.) Its size is also known to
the compiler and can be allocated along with the fixed frame area at function entry.
However, the standard calling sequence requires that the parameter list area begin
at a fixed offset (160) from the stack pointer, so this area must move when dynamic
stack allocation occurs.

Data in the parameter list area are naturally addressed at constant offsets from the
stack pointer. However, in the presence of dynamic stack allocation, the offsets from
the stack pointer to the data in the local variables area are not constant. To provide
addressability a frame pointer is established to locate the local variables area consis-
tently throughout the function’s activation.

Dynamic stack allocation is accomplished by "opening" the stack just above the pa-
rameter list area. The following steps show the process in detail:

1. After a new stack frame is acquired, and before the first dynamic space allo-
cation, a new register, the frame pointer or FP, is set to the value of the stack
pointer. The frame pointer is used for references to the function’s local, non-
static variables. The frame pointer does not change during the execution of a
function, even though the stack pointer may change as a result of dynamic al-
location.

2. The amount of dynamic space to be allocated is rounded up to a multiple of 8
bytes, so that 8-byte stack alignment is maintained.

3. The stack pointer is decreased by the rounded byte count, and the address of
the previous stack frame (the back chain) may be stored at the word addressed
by the new stack pointer. The back chain is not necessary to restore from this al-
location at the end of the function since the frame pointer can be used to restore
the stack pointer.

Figure 1-35 is a snapshot of the stack layout after the prolog code has dynamically
extended the stack frame.
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Before Dynamic Stack Allocation

Previous stack frame

Pravious stack frame

™ Back chain {optichal) —> Back chain (optional)
Local and spill variable area Lacel and spill variable area
of calling function of calling function
160+x
Paramater area
passed to called function

1&0

Reglster save area Dynamic Allocation Area

for called function uss
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Reserved for comgiler use
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SP__,
160+
Paramster area
passed to called function
1&d
Rapister save area
for called funetion usa
Resarved for compller use
Sp —» Back chain {optichal)

Figure 1-35. Dynamic Stack Space Allocation

The above process can be repeated as many times as desired within a single function
activation. When it is time to return, the stack pointer is set to the value of the back
chain, thereby removing all dynamically allocated stack space along with the rest of
the stack frame. Naturally, a program must not reference the dynamically allocated
stack area after it has been freed.

Even in the presence of signals, the above dynamic allocation scheme is "safe." If a
signal interrupts allocation, one of three things can happen:
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 The signal handler can return. The process then resumes the dynamic allocation

from the point of interruption.

« The signal handler can execute a non-local goto or a jump. This resets the process
to a new context in a previous stack frame, automatically discarding the dynamic

allocation.

 The process can terminate.

Regardless of when the signal arrives during dynamic allocation, the result is a con-

sistent (though possibly dead) process.

DWARF definition

This section defines the "Debug with Arbitrary Record Format" (DWARF) debug-
ging format for the zSeries processor family. The zSeries ABI does not define a debug
format. However, all systems that do implement DWAREF shall use the following def-

initions.

DWAREF is a specification developed for symbolic source-level debugging. The de-
bugging information format does not favor the design of any compiler or debugger.

The DWAREF definition requires some machine-specific definitions. The register num-
ber mapping is specified for the zSeries processors in Table 1-24.

Table 1-24. DWAREF register number mapping

DWARF number zSeries register
0-15 gpr0-gprl5
16 fpr0

17 fpr2

18 fprd

19 fpr6

20 fprl

21 fpr3

22 fpr5

23 fpr7

24 fpr8

25 fprl0

26 fprl2

27 fprl4

28 fpr9

29 fprll

30 fprl3

31 fprl5
32-47 cr0-crl5
48-63 ar0-arl5

64 PSW mask
65 PSW address
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This section describes the Executable and Linking Format (ELF).

ELF Header

Machine Information

For file identification in e_ident the zSeries processor family requires the values
shown in Table 2-1.

Table 2-1. Auxiliary Vector Types Description

Position Value Comments

e_ident[EI_CLASS] ELFCLASS64 For all 64bit
implementations

e_ident[EI_DATA] ELFDATA64MSB For all Big-Endian
implementations

The ELF header’s e_flags field holds bit flags associated with the file. Since the zSeries
processor family defines no flags, this member contains zero.

Processor identification resides in the ELF header’s e_machine field and must have
the value 22, defined as the name EM_S390.

Sections

Special Sections

Various sections hold program and control information. The sections listed in Table
2-2 are used by the system and have the types and attributes shown.

Table 2-2. Special Sections

Name Type Attributes

.got SHT_PROGBITS SHE_ALLOC +
SHE_WRITE

.plt SHT_PROGBITS SHE_ALLOC +
SHF_WRITE +
SHE_EXECINSTR

Special sections are described in Table 2-3.

Table 2-3. Special Sections Description

Name Description

.got This section holds the Global Offset Table, or GOT. See the Section
called Coding examples in Chapter 1 and the Section called Global
Offset Table in Chapter 3 for more information.
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.plt [This section holds the Procedure Linkage Table, or PLT. See the
Section called Procedure Linkage Tnble in Chapter 3 for more
information.

Symbol Table

Symbol Values

If an executable file contains a reference to a function defined in one of its associ-
ated shared objects, the symbol table section for the file will contain an entry for
that symbol. The st_shndx field of that symbol table entry contains SHN_UNDEE
This informs the dynamic linker that the symbol definition for that function is not
contained in the executable file itself. If that symbol has been allocated a Procedure
Linkage Table entry in the executable file, and the st_value field for that symbol table
entry is nonzero, the value is the virtual address of the first instruction of that PLT en-
try. Otherwise the st_value field contains zero. This PLT entry address is used by the
dynamic linker in resolving references to the address of the function. See the Section
called Function Addresses in Chapter 3 for details.

Relocation

Relocation Types

Relocation entries describe how to alter the instruction and data relocation fields
shown in Figure 2-1 (bit numbers appear in the lower box corners; byte numbers
appear in the upper left box corners).
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Figure 2-1. Relocation Fields

This specifies a 64-bit field occupying 8 bytes, the alignment of which is 4 bytes
unless otherwise specified.

This specifies a 32-bit field occupying 4 bytes, the alignment of which is 4 bytes
unless otherwise specified.

This specifies a 32-bit field occupying 4 bytes with 2-byte alignment. The signed
value in this field is shifted to the left by 1 before it is used as a program counter
relative displacement (for example, the immediate field of a "Load Address Rel-
ative Long" instruction).

This specifies a 16-bit field occupying 2 bytes with 2-byte alignment (for exam-
ple, the immediate field of an "Add Halfword Immediate" instruction).

This specifies a 16-bit field occupying 2 bytes with 2-byte alignment. The signed
value in this field is shifted to the left by 1 before it is used as a program counter
relative displacement (for example, the immediate field of an "Branch Relative"
instruction).
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low12

byte8
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This specifies a 12-bit field contained within a halfword with a 2-byte alignment.
The 12 bit unsigned value is the displacement of a memory reference.

This specifies a 8-bit field with a 1-byte alignment.

Calculations in Table 2-4 assume the actions are transforming a relocatable file into
either an executable or a shared object file. Conceptually, the linkage editor merges
one or more relocatable files to form the output. It first determines how to combine
and locate the input files, next it updates the symbol values, and then it performs
relocations.

Relocations applied to executable or shared object files are similar and accomplish
the same result. The following notations are used in Table 2-4:

Represents the addend used to compute the value of the relocatable field.

Represents the base address at which a shared object has been loaded into mem-
ory during execution. Generally, a shared object file is built with a 0 base virtual
address, but the execution address will be different.

Represents the section offset or address of the Global Offset Table. See the Section
called Coding examples in Chapter 1 and the Section called Global Offset Table in
Chapter 3 for more information.

Represents the section offset or address of the Procedure Linkage Table entry for
a symbol. A PLT entry redirects a function call to the proper destination. The
linkage editor builds the initial PLT. See the Section called Procedure Linkage Table
in Chapter 3 for more information.

Represents the offset into the GOT at which the address of the relocation entry’s
symbol will reside during execution. See the Section called Coding examples in
Chapter 1 and the Section called Global Offset Table in Chapter 3 for more infor-
mation.

Represents the place (section offset or address) of the storage unit being relocated
(computed using r_offset).

Represents the offset of the symbol within the section in which the symbol is
defined (its section-relative address).

Represents the value of the symbol whose index resides in the relocation entry.

Relocation entries apply to bytes, halfwords or words. In either case, the r_offset
value designates the offset or virtual address of the first byte of the affected storage
unit. The relocation type specifies which bits to change and how to calculate their
values. The zSeries family uses only the Elf64_Rela relocation entries with explicit
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addends. For the relocation entries, the r_addend field serves as the relocation ad-
dend. In all cases, the offset, addend, and the computed result use the byte order
specified in the ELF header.

The following general rules apply to the interpretation of the relocation types in Table

2-4:

"+" and "-" denote 64-bit modulus addition and subtraction, respectively. ">>" de-
notes arithmetic right-shifting (shifting with sign copying) of the value of the left
operand by the number of bits given by the right operand.

For relocation type half16, the upper 48 bits of the value computed must be all ones
or all zeroes. For relocation type pcl6, the upper 47 bits of the value computed
must be all ones or all zeroes and the lowest bit must be zero. For relocation type
pc32, the upper 31 bits of the value computed must be all ones or all zeroes and the
lowest bit must be zero. For relocation type low12, the upper 52 bits of the value
computed must all be zero and for relocation type byte8, the upper 56 bits of the
value computed must all be zero.

Reference in a calculation to the value G or O implicitly creates a GOT entry for the
indicated symbol and a reference to L implicitly creates a PLT entry.

Table 2-4. Relocation Types

Name \Value Field Calculation
R_390_NONE 0 none none

R_390_8 1 byte8 S+ A

R_390_12 2 low12 S+A

R_390_16 3 half16 S+ A

R_390_32 4 word32 S+A
R_390_PC32 5 word32 S+A-P
R_390_GOT12 6 low12 O+A
R_390_GOT32 7 word32 O+A
R_390_PLT32 8 word32 L+A
R_390_COPY 9 none (see below)
R_390_GLOB_DAT 10 quad64 S + A (see below)
R_390_JMP_SLOT 11 none (see below)
R_390_RELATIVE 12 quad64 B + A (see below)
R_390_GOTOFF 13 quad64 S+A-G
R_390_GOTPC 14 quad64 G+A-P
R_390_GOT16 15 half16 O+A
R_390_PC16 16 half16 S+A-P
R_390_PC16DBL 17 cl6 S+A-P)>>1
R_390_PLT16DBL 18 cl6 L+A-P)>>1
IR_390_PC32DBL 19 c32 S+A-P)>>1
R_390_PLT32DBL 20 c32 L+A-P)>>1
R_390_GOTPCDBL 21 c32 (G+A-P)>>1
R_390_64 22 quad64 S+ A
R_390_PC64 23 quad64 S+A-P
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R_390_GOT64 24 quad64 O+A
R_390_PLT64 25 quad64 L+A
R_390_GOTENT 26 c32 (G+O+A-P)>>1

Table 2-5. Relocation type descriptions

Name

Description

R_390_COPY

The linkage editor creates this relocation type for dynamic
linking. Its offset member refers to a location in a writable
segment. The symbol table index specifies a symbol that
should exist both in the current object file and in a shared
object. During execution, the dynamic linker copies data
associated with the shared object’s symbol to the location
specified by the offset.

R_390_GLOB_DAT

This relocation type resembles R_390_64, except that it sets
a Global Offset Table entry to the address of the specified
symbol. This special relocation type allows one to
determine the correspondence between symbols and GOT
entries.

R_390_JMP_SLOT

The linkage editor creates this relocation type for dynamic
linking. Its offset member gives the location of a Procedure
Linkage Table entry. The dynamic linker modifies the PLT
entry to transfer control to the designated symbol’s
address (see the Section called Procedure Linkage Table in
Chapter 3).

R_390_RELATIVE

The linkage editor creates this relocation type for dynamic
linking. Its offset member gives a location within a shared
object that contains a value representing a relative address.
The dynamic linker computes the corresponding virtual
address by adding the virtual address at which the shared
object was loaded to the relative address. Relocation
entries for this type must specify 0 for the symbol table

index.
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This section describes how the Executable and Linking Format (ELF) is used in the
construction and execution of programs.

Program Loading

As the system creates or augments a process image, it logically copies a file’s seg-
ment to a virtual memory segment. When — and if — the system physically reads the
file depends on the program’s execution behavior, on the system load, and so on.
A process does not require a physical page until it references the logical page dur-
ing execution, and processes commonly leave many pages unreferenced. Therefore,
if physical reads can be delayed they can frequently be dispensed with, improving
system performance. To obtain this efficiency in practice, executable and shared ob-
ject files must have segment images of which the offsets and virtual addresses are
congruent modulo the page size.

Virtual addresses and file offsets for the zSeries processor family segments are con-
gruent modulo the system page size. The value of the p_align field of each program
header in a shared object file must be a multiple of the system page size. Figure 3-1 is
an example of an executable file assuming an executable program linked with a base
address of 0x80000000 (2 Gbytes).

Fila Dffsat Virlual Address

Q O=B0000040
ELF header
Program header tabls

Gther informatizn

Text segment

DxlhESE bytes

OxBOO1bEfESL
0x1bLfhE
Data segment
L Ox8001LaEss
Oxl7cd bytes
0xld7lc Ox8001e?lc
Cther Infermation
Figure 3-1. Executable File Example
Table 3-1. Program Header Segments
Member Text Data
_type PT_LOAD PT_LOAD
_offset 0x0 0x1bf58
_vaddr 0x80000000 0x8001cf58
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_paddr unspecified unspecified
_filesz 0x1bf58 0x17c4
_memsz 0x1bf58 0x2578
_flags PF_R+PF_X PF_R+PF_W
_align 0x1000 0x1000

Although the file offsets and virtual addresses are congruent modulo 4 Kbytes for
both text and data, up to four file pages can hold impure text or data (depending on
page size and file system block size).

o The first text page contains the ELF header, the program header table, and other
information.

« The last text page may hold a copy of the beginning of data.
¢ The first data page may have a copy of the end of text.
¢ The last data page may contain file information not relevant to the running process.

Logically, the system enforces memory permissions as if each segment were complete
and separate; segment addresses are adjusted to ensure that each logical page in the
address space has a single set of permissions. In the example in Table 3-1 the file
region holding the end of text and the beginning of data is mapped twice; at one
virtual address for text and at a different virtual address for data.

The end of the data segment requires special handling for uninitialized data, which
the system defines to begin with zero values. Thus if the last data page of a file in-
cludes information beyond the logical memory page, the extraneous data must be set
to zero by the loader, rather than to the unknown contents of the executable file. 'Im-
purities” in the other three segments are not logically part of the process image, and
whether the system clears them is unspecified. The memory image for the program
in Table 3-1 is presented in Figure 3-2.
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Virtual Address Sagmeant
Ox80000000
ELF header
Program header table
Other information
Text
Text segment
Ox1kh£5E hyles
OxB0Q1bLISH Page padding
Dxak bylas
QRAQOLcQUO
Padding
0xt54 bytes
CxBOOlcfhd
Data segment
. e . Data
Dx17c4 bytes
0x800le7le Uninitialized data
Dxdd bytes
OxA001£4d0 Page padding
NxBO01ELfE 0xk30 bytes

Figure 3-2. Process Image Segments

One aspect of segment loading differs between executable files and shared objects.
Executable file segments may contain absolute code. For the process to execute cor-
rectly, the segments must reside at the virtual addresses assigned when building the
executable file, with the system using the p_vaddr values unchanged as virtual ad-
dresses.

On the other hand, shared object segments typically contain position-independent
code. This allows a segment’s virtual address to change from one process to an-
other, without invalidating execution behavior. Though the system chooses virtual
addresses for individual processes, it maintains the "relative positions" of the seg-
ments. Because position-independent code uses relative addressing between seg-
ments, the difference between virtual addresses in memory must match the differ-
ence between virtual addresses in the file. Table 3-2 shows possible shared object
virtual address assignments for several processes, illustrating constant relative posi-
tioning. The table also illustrates the base address computations.
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Table 3-2. Shared Object Segment Example for 42-bit address space

Source Text Data Base Address
File 0x00000000200 0x0000002a400

Process 1 0x20000000000 0x2000002a400 0x20000000000
Process 2 0x20000010000 0x2000003a400 0x20000010000
Process 3 0x20000020000 0x2000004a400 0x20000020000
Process 4 0x20000030000 0x2000005a400 0x20000030000

Dynamic Linking

Dynamic Section

Dynamic section entries give information to the dynamic linker. Some of this infor-
mation is processor-specific, including the interpretation of some entries in the dy-
namic structure.

DT_PLTGOT

The d_ptr field of this entry gives the address of the first byte in the Procedure
Linkage Table (.PLT in the Section called Procedure Linkage Table).

DT_JMPREL
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This entry is associated with a table of relocation entries for the PLT. For zSeries
this entry is mandatory both for executable and shared object files. Moreover,
the relocation table’s entries must have a one-to-one correspondence with the
PLT. The table of DT_JMPREL relocation entries is wholly contained within the
DT_RELA referenced table. See the Section called Procedure Linkage Table for
more information.

Global Offset Table

Position-independent code cannot, in general, contain absolute virtual addresses.
Global Offset Tables hold absolute addresses in private data, thus making the ad-
dresses available without compromising the position-independence and sharability
of a program’s text. A program references its GOT using position-independent ad-
dressing and extracts absolute values, thus redirecting position-independent refer-
ences to absolute locations.

When the dynamic linker creates memory segments for a loadable object file, it pro-
cesses the relocation entries, some of which will be of type R_390_GLOB_DAT, re-
ferring to the GOT. The dynamic linker determines the associated symbol values,
calculates their absolute addresses, and sets the GOT entries to the proper values. Al-
though the absolute addresses are unknown when the linkage editor builds an object
file, the dynamic linker knows the addresses of all memory segments and can thus
calculate the absolute addresses of the symbols contained therein.

A GOT entry provides direct access to the absolute address of a symbol without com-
promising position-independence and sharability. Because the executable file and
shared objects have separate GOTs, a symbol may appear in several tables. The dy-
namic linker processes all the GOT relocations before giving control to any code in
the process image, thus ensuring the absolute addresses are available during execu-
tion.
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The dynamic linker may choose different memory segment addresses for the same
shared object in different programs; it may even choose different library addresses
for different executions of the same program. Nevertheless, memory segments do
not change addresses once the process image is established. As long as a process
exists, its memory segments reside at fixed virtual addresses.

The format and interpretation of the Global Offset Table is processor specific. For
zSeries the symbol _GLOBAL_OFFSET_TABLE_ may be used to access the table. The
symbol refers to the start of the .got section. Two words in the GOT are reserved:

e The word at _GLOBAL_OFFSET_TABLE_[0] is set by the linkage editor to hold the
address of the dynamic structure, referenced with the symbol _DYNAMIC. This
allows a program, such as the dynamic linker, to find its own dynamic structure
without having yet processed its relocation entries. This is especially important
for the dynamic linker, because it must initialize itself without relying on other
programs to relocate its memory image.

o The word at _GLOBAL_OFFSET_TABLE_[1] is reserved for future use.
The Global Offset Table resides in the ELF .got section.

Function Addresses

References to a function address from an executable file and from the shared ob-
jects associated with the file must resolve to the same value. References from within
shared objects will normally be resolved (by the dynamic linker) to the virtual ad-
dress of the function itself. References from within the executable file to a function
defined in a shared object will normally be resolved (by the linkage editor) to the
address of the Procedure Linkage Table entry for that function within the executable
file.

To allow comparisons of function addresses to work as expected, if an executable
file references a function defined in a shared object, the linkage editor will place the
address of the PLT entry for that function in its associated symbol table entry. See the
Section called Symbol Values in Chapter 2 for details. The dynamic linker treats such
symbol table entries specially. If the dynamic linker is searching for a symbol and
encounters a symbol table entry for that symbol in the executable file, it normally
follows these rules:

o If the st_shndx field of the symbol table entry is not SHN_UNDEEF, the dynamic
linker has found a definition for the symbol and uses its st_value field as the sym-
bol’s address.

« If the st_shndx field is SHN_UNDEF and the symbol is of type STT_FUNC and the
st_value field is not zero, the dynamic linker recognizes this entry as special and
uses the st_value field as the symbol’s address.

+ Otherwise, the dynamic linker considers the symbol to be undefined within the
executable file and continues processing.

Some relocations are associated with PLT entries. These entries are used for direct
function calls rather than for references to function addresses. These relocations are
not treated specially as described above because the dynamic linker must not redirect
PLT entries to point to themselves.

Procedure Linkage Table

Much as the Global Offset Table redirects position-independent address calculations
to absolute locations, the Procedure Linkage Table redirects position-independent
function calls to absolute locations. The linkage editor cannot resolve execution trans-
fers (such as function calls) from one executable or shared object to another, so instead
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it arranges for the program to transfer control to entries in the PLT. The dynamic
linker determines the absolute addresses of the destinations and stores them in the
GOT, from which they are loaded by the PLT entry. The dynamic linker can thus redi-
rect the entries without compromising the position-independence and sharability of
the program text. Executable files and shared object files have separate PLTs.

As mentioned above, a relocation table is associated with the PLT. The DT_JMPREL
entry in the_DYNAMIC array gives the location of the first relocation entry. The relo-
cation table entries match the PLT entries in a one-to-one correspondence (relocation
table entry 1 applies to PLT entry 1 and so on). The relocation type for each entry shall
be R_390_JMP_SLOT. The relocation offset shall specify the address of the GOT entry
containing the address of the function and the symbol table index shall reference the
appropriate symbol.

To illustrate Procedure Linkage Tables, Figure 3-3 shows how the linkage editor
might initialize the PLT when linking a shared executable or shared object.

* #PLT

for executables (not position independent)

PLT1 BASR 1,0 # Establish base

BASE1 L 1,AGOTENT-BASE1(1) # Load address of the GOT entry

L 1,000,1) # Load function address from the GOT

torl

BCR 15,1 # Jump to address
RET1 BASR 1,0 # Return from GOT first time (lazy
binding)

BASE2 L 1,ASYMOFF-BASE2(1) # Load offset in symbol table to r1

BRC 15,x # Jump to start of PLT

.word 0 # Filler
AGOTENT .long ? # Address of the GOT entry
ASYMOFF .long ? # Offset into the symbol table
* # PLT for shared objects (position
independent)

PLT1 LARL 1,<fn>@GOTENT # Load address of GOT entry in
rl
LG 1,0(1) # Load function address from the GOT

torl
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BCR 151 # Jump to address

BASR 1,0 # Return from GOT first time (lazy

binding)

BASE2 LGF 1,ASYMOFF-BASE2(1) # Load offset in symbol table to r1

BRCL 15,-x # Jump to start of PLT

ASYMOFF .long ? # Offset into symbol

table

Figure 3-3. Procedure Linkage Table Example

As described below the dynamic linker and the program cooperate to resolve sym-

bolic

references through the PLT. Again, the details described below are for explana-

tion only. The precise execution-time behavior of the dynamic linker is not specified.

1.

The caller of a function in a different shared object transfers control to the start
of the PLT entry associated with the function.

. The first part of the PLT entry loads the address from the GOT entry associated

with the function to be called. The control is transferred to the code referenced
by the address. If the function has already been called at least once, or lazy
binding is not used, then the address found in the GOT is the address of the
function.

. If a function has never been called and lazy binding is used then the address in

the GOT points to the second half of the PLT. The second half loads the offset in
the symbol table associated with the called function. Control is then transferred
to the special first entry of the PLT.

. This first entry of the PLT entry (Figure 3-4) calls the dynamic linker giving it

the offset into the symbol table and the address of a structure that identifies the
location of the caller.

. The dynamic linker finds the real address of the symbol. It will store this ad-

dress in the GOT entry of the function in the object code of the caller and it will
then transfer control to the function.

. Subsequent calls to the function from this object will find the resolved address

in the first half of the PLT entry and will transfer control directly without invok-
ing the dynamic linker.

# PLTO

for static object (not position-independent)

PLTO

ST 1,28(15) # R1 has offset into symbol table

BASR 1,0 # Establish base

BASE1 L 1,AGOT-BASEI(1) # Get address of GOT

MVC 24(4,15),4(1) # Move loader info to stack

L 1,8() # Get address of loader
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BR 1 # Jump to loader
.word 0 # Filler
AGOT  .long got # Address of GOT
# PLTO for shared object

(position-independent)
PLTO STG 1,56(15) # R1 has offset into symbol table
LARL 1, GLOBAL_OFFSET_TABLE_
MVC 48(8,15),8(1) # move loader info (object struct
address) to stack
LG 1,16(12) # Entry address of loader in R1
BCR 151 # Jump to

loader

Figure 3-4. Special first entry in Procedure Linkage Table

The LD_BIND_NOW environment variable can change dynamic linking behavior.
If its value is not null the dynamic linker resolves the function call binding at load
time, before transferring control to the program. In other words the dynamic linker
processes relocation entries of type R_390_JMP_SLOT during process initialization.
If LD_BIND_NOW is null the dynamic linker evaluates PLT entries lazily, delaying
symbol resolution and relocation until the first execution of a table entry.

Note: Lazy binding generally improves overall application performance because unused
symbols do not incur the overhead of dynamic linking. Nevertheless, two situations make

lazy binding undesirable for some applications:

1. The initial reference to a shared object function takes longer than subsequent calls
because the dynamic linker intercepts the call to resolve the symbol, and some

applications cannot tolerate this unpredictability.

2. If an error occurs and the dynamic linker cannot resolve the symbol, the dynamic
linker will terminate the program. Under lazy binding, this might occur at arbitrary
times. Once again, some applications cannot tolerate this unpredictability. By turn-
ing off lazy binding, the dynamic linker forces the failure to occur during process

initialization, before the application receives control.
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GNU Free Documentation License
A current copy of the license can be found at:
http:/ /www.linuxbase.org/spec/refspecs/LSB_1.2.0/gLSB/ gfdl.html
Version 1.1, March 2000

Copyright (C) 2000 Free Software Foundation, Inc. 59 Temple Place, Suite 330, Boston,
MA 02111-1307 USA Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

PREAMBLE

The purpose of this License is to make a manual, textbook, or other written docu-
ment "free" in the sense of freedom: to assure everyone the effective freedom to copy
and redistribute it, with or without modifying it, either commercially or noncommer-
cially. Secondarily, this License preserves for the author and publisher a way to get
credit for their work, while not being considered responsible for modifications made
by others. This License is a kind of "copyleft", which means that derivative works of
the document must themselves be free in the same sense. It complements the GNU
General Public License, which is a copyleft license designed for free software. We
have designed this License in order to use it for manuals for free software, because
free software needs free documentation: a free program should come with manuals
providing the same freedoms that the software does. But this License is not limited
to software manuals; it can be used for any textual work, regardless of subject matter
or whether it is published as a printed book. We recommend this License principally
for works whose purpose is instruction or reference.

APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work that contains a notice placed by
the copyright holder saying it can be distributed under the terms of this License. The
"Document”, below, refers to any such manual or work. Any member of the public is
a licensee, and is addressed as "you".

A "Modified Version" of the Document means any work containing the Document or
a portion of it, either copied verbatim, or with modifications and/or translated into
another language.

A "Secondary Section" is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Docu-
ment to the Document’s overall subject (or to related matters) and contains nothing
that could fall directly within that overall subject. (For example, if the Document is
in part a textbook of mathematics, a Secondary Section may not explain any mathe-
matics.) The relationship could be a matter of historical connection with the subject
or with related matters, or of legal, commercial, philosophical, ethical or political po-
sition regarding them.

The "Invariant Sections" are certain Secondary Sections whose titles are designated,
as being those of Invariant Sections, in the notice that says that the Document is
released under this License.

The "Cover Texts" are certain short passages of text that are listed, as Front-Cover
Texts or Back-Cover Texts, in the notice that says that the Document is released under
this License.

A "Transparent” copy of the Document means a machine-readable copy, represented
in a format whose specification is available to the general public, whose contents
can be viewed and edited directly and straightforwardly with generic text editors
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or (for images composed of pixels) generic paint programs or (for drawings) some
widely available drawing editor, and that is suitable for input to text formatters or
for automatic translation to a variety of formats suitable for input to text formatters. A
copy made in an otherwise Transparent file format whose markup has been designed
to thwart or discourage subsequent modification by readers is not Transparent. A
copy that is not "Transparent" is called "Opaque".

Examples of suitable formats for Transparent copies include plain ASCII without
markup, Texinfo input format, LaTeX input format, SGML or XML using a publicly
available DTD, and standard-conforming simple HTML designed for human mod-
ification. Opaque formats include PostScript, PDF, proprietary formats that can be
read and edited only by proprietary word processors, SGML or XML for which the
DTD and/or processing tools are not generally available, and the machine-generated
HTML produced by some word processors for output purposes only.

The "Title Page" means, for a printed book, the title page itself, plus such following
pages as are needed to hold, legibly, the material this License requires to appear in the
title page. For works in formats which do not have any title page as such, "Title Page"
means the text near the most prominent appearance of the work’s title, preceding the
beginning of the body of the text.

VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license
notice saying this License applies to the Document are reproduced in all copies, and
that you add no other conditions whatsoever to those of this License. You may not
use technical measures to obstruct or control the reading or further copying of the
copies you make or distribute. However, you may accept compensation in exchange
for copies. If you distribute a large enough number of copies you must also follow
the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may
publicly display copies.

COPYING IN QUANTITY

If you publish printed copies of the Document numbering more than 100, and the
Document’s license notice requires Cover Texts, you must enclose the copies in covers
that carry, clearly and legibly, all these Cover Texts: Front-Cover Texts on the front
cover, and Back-Cover Texts on the back cover. Both covers must also clearly and
legibly identify you as the publisher of these copies. The front cover must present the
full title with all words of the title equally prominent and visible. You may add other
material on the covers in addition. Copying with changes limited to the covers, as
long as they preserve the title of the Document and satisfy these conditions, can be
treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put
the first ones listed (as many as fit reasonably) on the actual cover, and continue the
rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than
100, you must either include a machine-readable Transparent copy along with each
Opaque copy, or state in or with each Opaque copy a publicly-accessible computer-
network location containing a complete Transparent copy of the Document, free of
added material, which the general network-using public has access to download
anonymously at no charge using public-standard network protocols. If you use the
latter option, you must take reasonably prudent steps, when you begin distribution
of Opaque copies in quantity, to ensure that this Transparent copy will remain thus
accessible at the stated location until at least one year after the last time you distribute
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an Opaque copy (directly or through your agents or retailers) of that edition to the
public.

It is requested, but not required, that you contact the authors of the Document well
before redistributing any large number of copies, to give them a chance to provide
you with an updated version of the Document.

MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the condi-
tions of sections 2 and 3 above, provided that you release the Modified Version un-
der precisely this License, with the Modified Version filling the role of the Document,
thus licensing distribution and modification of the Modified Version to whoever pos-
sesses a copy of it. In addition, you must do these things in the Modified Version:

 Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any,
be listed in the History section of the Document). You may use the same title as a
previous version if the original publisher of that version gives permission.

« List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five
of the principal authors of the Document (all of its principal authors, if it has less
than five).

+ State on the Title page the name of the publisher of the Modified Version, as the
publisher.

+ Preserve all the copyright notices of the Document.

+ Add an appropriate copyright notice for your modifications adjacent to the other
copyright notices.

* Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

« Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.

« Include an unaltered copy of this License.

« Preserve the section entitled "History", and its title, and add to it an item stating at
least the title, year, new authors, and publisher of the Modified Version as given on
the Title Page. If there is no section entitled "History" in the Document, create one
stating the title, year, authors, and publisher of the Document as given on its Title
Page, then add an item describing the Modified Version as stated in the previous
sentence.

+ Preserve the network location, if any, given in the Document for public access to
a Transparent copy of the Document, and likewise the network locations given in
the Document for previous versions it was based on. These may be placed in the
"History" section. You may omit a network location for a work that was published
at least four years before the Document itself, or if the original publisher of the
version it refers to gives permission.

* In any section entitled "Acknowledgements" or "Dedications", preserve the sec-
tion’s title, and preserve in the section all the substance and tone of each of the
contributor acknowledgements and/or dedications given therein.

e Preserve all the Invariant Sections of the Document, unaltered in their text and in
their titles. Section numbers or the equivalent are not considered part of the section
titles.
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* Delete any section entitled "Endorsements". Such a section may not be included in
the Modified Version.

» Do not retitle any existing section as "Endorsements" or to conflict in title with any
Invariant Section.

If the Modified Version includes new front-matter sections or appendices that qualify
as Secondary Sections and contain no material copied from the Document, you may
at your option designate some or all of these sections as invariant. To do this, add
their titles to the list of Invariant Sections in the Modified Version’s license notice.
These titles must be distinct from any other section titles.

You may add a section entitled "Endorsements", provided it contains nothing but en-
dorsements of your Modified Version by various parties--for example, statements of
peer review or that the text has been approved by an organization as the authoritative
definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage
of up to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the
Modified Version. Only one passage of Front-Cover Text and one of Back-Cover Text
may be added by (or through arrangements made by) any one entity. If the Docu-
ment already includes a cover text for the same cover, previously added by you or by
arrangement made by the same entity you are acting on behalf of, you may not add
another; but you may replace the old one, on explicit permission from the previous
publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permis-
sion to use their names for publicity for or to assert or imply endorsement of any
Modified Version.

COMBINING DOCUMENTS

You may combine the Document with other documents released under this License,
under the terms defined in section 4 above for modified versions, provided that you
include in the combination all of the Invariant Sections of all of the original docu-
ments, unmodified, and list them all as Invariant Sections of your combined work in
its license notice.

The combined work need only contain one copy of this License, and multiple identi-
cal Invariant Sections may be replaced with a single copy. If there are multiple Invari-
ant Sections with the same name but different contents, make the title of each such
section unique by adding at the end of it, in parentheses, the name of the original
author or publisher of that section if known, or else a unique number. Make the same
adjustment to the section titles in the list of Invariant Sections in the license notice of
the combined work.

In the combination, you must combine any sections entitled "History" in the various
original documents, forming one section entitled "History"; likewise combine any
sections entitled "Acknowledgements", and any sections entitled "Dedications". You
must delete all sections entitled "Endorsements."

COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released
under this License, and replace the individual copies of this License in the various
documents with a single copy that is included in the collection, provided that you
follow the rules of this License for verbatim copying of each of the documents in all
other respects.

You may extract a single document from such a collection, and distribute it individu-
ally under this License, provided you insert a copy of this License into the extracted
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document, and follow this License in all other respects regarding verbatim copying
of that document.

AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and indepen-
dent documents or works, in or on a volume of a storage or distribution medium,
does not as a whole count as a Modified Version of the Document, provided no com-
pilation copyright is claimed for the compilation. Such a compilation is called an
"aggregate", and this License does not apply to the other self-contained works thus
compiled with the Document, on account of their being thus compiled, if they are not
themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Docu-
ment, then if the Document is less than one quarter of the entire aggregate, the Docu-
ment’s Cover Texts may be placed on covers that surround only the Document within
the aggregate. Otherwise they must appear on covers around the whole aggregate.

TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of
the Document under the terms of section 4. Replacing Invariant Sections with transla-
tions requires special permission from their copyright holders, but you may include
translations of some or all Invariant Sections in addition to the original versions of
these Invariant Sections. You may include a translation of this License provided that
you also include the original English version of this License. In case of a disagreement
between the translation and the original English version of this License, the original
English version will prevail.

TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly
provided for under this License. Any other attempt to copy, modify, sublicense or
distribute the Document is void, and will automatically terminate your rights under
this License. However, parties who have received copies, or rights, from you under
this License will not have their licenses terminated so long as such parties remain in
full compliance.

FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.
See http:/ /www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Docu-
ment specifies that a particular numbered version of this License "or any later ver-
sion" applies to it, you have the option of following the terms and conditions either
of that specified version or of any later version that has been published (not as a
draft) by the Free Software Foundation. If the Document does not specify a version
number of this License, you may choose any version ever published (not as a draft)
by the Free Software Foundation.
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How to use this License for your documents

To use this License in a document you have written, include a copy of the License in
the document and put the following copyright and license notices just after the title

page:
Copyright (c) YEAR YOUR NAME.
Permission is granted to copy, distribute
and/or modify this document under the terms of the GNU Free
Documentation
License, Version 1.1 or any later version published by the Free
Software Foundation;
with the Invariant Sections being LIST THEIR TITLES, with the
Front-Cover
Texts being LIST, and with the Back-Cover Texts being LIST.
A copy of the license is included in the section entitled
"GNU Free Documentation License".
If you have no Invariant Sections, write "with no Invariant Sections" instead of saying

which ones are invariant. If you have no Front-Cover Texts, write "no Front-Cover
Texts" instead of "Front-Cover Texts being LIST"; likewise for Back-Cover Texts.

If your document contains nontrivial examples of program code, we recommend re-
leasing these examples in parallel under your choice of free software license, such as
the GNU General Public License, to permit their use in free software.
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This information was developed for products and services offered in the U.S.A. IBM
may not offer the products, services, or features discussed in this document in other
countries. Consult your local IBM representative for information about the products
and services currently available in your area. Any reference to an IBM product, pro-
gram, or service is not intended to state or imply that only that IBM product, pro-
gram, or service may be used. Any functionally equivalent product, program, or ser-
vice that does not infringe any IBM intellectual property right may be used instead.
However, it is the user’s responsibility to evaluate and verify the operation of any
non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter de-
scribed in this document. The furnishing of this document does not give you any
license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation

North Castle Drive
Armonk, NY 10504-1785

US.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM In-
tellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku

Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law: INTERNATIONAL
BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION “AS
IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. Some states do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for conve-
nience only and do not in any manner serve as an endorsement of those Web sites.
The materials at those Web sites are not part of the materials for this IBM product
and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes
appropriate without incurring any obligation to you.
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Information concerning non-IBM products was obtained from the suppliers of those
products, their published announcements or other publicly available sources. IBM
has not tested those products and cannot confirm the accuracy of performance, com-
patibility or any other claims related to non-IBM products. Questions on the capabil-
ities of non-IBM products should be addressed to the suppliers of those products.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to IBM,
for the purposes of developing, using, marketing or distributing application pro-
grams conforming to the application programming interface for the operating plat-
form for which the sample programs are written. These examples have not been thor-
oughly tested under all conditions. IBM, therefore, cannot guarantee or imply relia-
bility, serviceability, or function of these programs. You may copy, modify, and dis-
tribute these sample programs in any form without payment to IBM for the purposes
of developing, using, marketing, or distributing application programs conforming to
IBM'’s application programming interfaces.

Programming interface information

This book contains information and examples which are not intended to be used as a
programming interface of Linux for zSeries.

Trademarks
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The following terms are trademarks of International Business Machines Corporation
in the United States, other countries, or both:

Table 4-1.

IBM ESA /390
S/390 System /390
zSeries z/ Architecture

Linux is a registered trademark of Linus Torvalds and others.

Other company, product, and service names may be trademarks or service marks of
others.
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Related publications:

» [z/Architecture Principles of Operation ]: SA22-7832
* [System V Application Binary Interface |
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